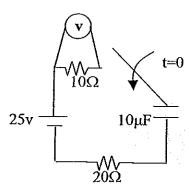

RC circuits extended

- 1. When the switch is in position A, the circuit reaches steady state conditions. It is then thrown to position B.
 - a. Is the capacitor charging or discharging?
 - b. What is the time constant?
 - c. Find the capacitor voltage as a function of time.
 - d. Find the resistor voltage as a function of time.
 - e. Find the current as a function of time.
 - f. At, 0.25 ms, what is the voltage and current across the resistor and the voltage across the capacitor?


- 2. The circuit is in steady state at t = 0- (switch is originally open).
 - a. What is the voltmeter reading at this point?

Just as the switch is closed:

- b. Determine the voltmeter reading.
- c. Determine the current as a function of time.
- d. Find the voltmeter reading at 0.5 ms.

After the circuit again reaches steady state:

- e. Determine the voltmeter reading.
- f. Write a differential equation using variables (use Kirchhoff's voltage loop rule).

1,000

7=12=38-4

N= (-23) (6) 8 (125-23)

Per : 201

3) 1 25 = 1.25A

10) V= 25-12.5v = 12.5v

Vc = 125 = 10 m

ていなでいかいのことりょ

Vc = 12.50 = 14.7

1. V= 204 Ve keen of 2-500 mills, V= 6.25e-4147 Volls

d) V= 6.25==2/47

V= 5.99~1h

Arms with ac (Cu = 11 m 5, Vg = 4.92/(8) = 14.50 Ve = 20-14.5 = 5.5V (FUN) 7=00=(3)(3)=9 V = 5.5= 5/9 Y= (= 15.50 (17) V2 = (10) (5.5-Ela) V3= .92=619 J V2=4.58e+19